Interface Problems for Quasilinear Elliptic Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations

We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem  −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...

متن کامل

On Quasilinear Elliptic Equations in Ir

In this note we give a result for the operator p-Laplacian complementing a theorem by Brézis and Kamin concerning a necessary and sufficient condition for the equation −∆u = h(x)u in IR , where 0 < q < 1, to have a bounded positive solution. While Brézis and Kamin use the method of sub and super solutions, we employ variational arguments for the existence of solutions.

متن کامل

Anisotropic quasilinear elliptic equations with variable exponent

We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory. 2000 Mathematics Subject Classification: 35J60, 35J62, 35J70.

متن کامل

Positive Solutions of Quasilinear Elliptic Equations

(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1999

ISSN: 0022-0396

DOI: 10.1006/jdeq.1998.3622